Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 6947-6954, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427582

RESUMO

Although screening technology has heavily impacted the fields of metal catalysis and drug discovery, its application to the discovery of new catalyst classes has been limited. The diversity of on- and off-cycle pathways, combined with incomplete mechanistic understanding, means that screens of potential new ligands have thus far been guided by intuitive analysis of the metal binding potential. This has resulted in the discovery of new classes of ligands, but the low hit rates have limited the use of this strategy because large screens require considerable cost and effort. Here, we demonstrate a method to identify promising screening directions via simple and scalable computational and linear regression tools that leads to a substantial improvement in hit rate, enabling the use of smaller screens to find new ligands. The application of this approach to a particular example of Ni-catalyzed cross-electrophile coupling of aryl halides with alkyl halides revealed a previously overlooked trend: reactions with more electron-poor amidine ligands result in a higher yield. Focused screens utilizing this trend were more successful than serendipity-based screening and led to the discovery of two new types of ligands, pyridyl oxadiazoles and pyridyl oximes. These ligands are especially effective for couplings of bromo- and chloroquinolines and isoquinolines, where they are now the state of the art. The simplicity of these models with parameters derived from metal-free ligand structures should make this approach scalable and widely accessible.

2.
J Med Chem ; 66(15): 10150-10201, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37528515

RESUMO

Each year, new drugs are introduced to the market, representing structures that have affinity for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and serve as potential leads for the design of future medicines. This annual review is part of a continuing series highlighting the most likely process-scale synthetic approaches to 35 NCEs that were first approved anywhere in the world during 2021.


Assuntos
Desenho de Fármacos , Humanos , Preparações Farmacêuticas , Imunoconjugados/química
3.
J Org Chem ; 85(21): 13391-13414, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33076663

RESUMO

Due to their inherent ring strain and electrophilicity, epoxides are highly attractive building blocks for fundamental organic reactions. However, controlling the regioselectivity of disubstituted epoxide transformations is often particularly challenging. Most Lewis acid-mediated processes take advantage of intrinsic steric or electronic substrate bias to influence the site of nucleophilic attack. Therefore, the scope of many of these systems is frequently quite limited. Recent efforts to generate catalysts that can overcome substrate bias have expanded the synthetic utility of these well-known reactions. In this Perspective, we highlight various regioselective transformations of disubstituted epoxides, emphasizing those that have inspired the production of challenging, catalyst-controlled processes.


Assuntos
Compostos de Epóxi , Ácidos de Lewis , Catálise
4.
J Am Chem Soc ; 142(17): 8029-8035, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32309937

RESUMO

Reactions facilitating inversion of alkene stereochemistry are rare, sought-after transformations in the field of modern organic synthesis. Although a number of isomerization reactions exist, most methods require specific, highly activated substrates to achieve appreciable conversion without side product formation. Motivated by stereoinvertive epoxide carbonylation reactions, we developed a two-step epoxidation/deoxygenation process that results in overall inversion of alkene stereochemistry. Unlike most deoxygenation systems, carbon monoxide was used as the terminal reductant, preventing difficult postreaction separations, given the gaseous nature of the resulting carbon dioxide byproduct. Various alkyl-substituted cis- and trans-epoxides can be reduced to trans- and cis-alkenes, respectively, in >99:1 stereospecificity and up to 95% yield, providing an alternative to traditional, direct isomerization approaches.


Assuntos
Alcenos/química , Catálise , Humanos , Estereoisomerismo
5.
J Am Chem Soc ; 141(6): 2474-2480, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30707018

RESUMO

We report the regioselective carbonylation of 2,2-disubstituted epoxides to ß,ß-disubstituted ß-lactones. Mechanistic studies revealed epoxide ring-opening as the turnover limiting step, an insight that facilitated the development of improved reaction conditions using weakly donating, ethereal solvents. A wide range of epoxides can be carbonylated to ß-lactones, which are subsequently ring-opened to produce ketone-based aldol adducts, providing an alternative to the Mukaiyama aldol reaction. Enantiopure epoxides were demonstrated to undergo the carbonylation/ring-opening process with retention of stereochemistry to form enantiopure ß-hydroxy esters.


Assuntos
Compostos de Epóxi/química , Cetonas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...